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ABSTRACT 

A classic theorem of P61ya shows that 2 z is, in a strong sense, the "small- 

est" transcendental entire function that is integer valued on N. An anal- 

ogous result of Gel'fond concerns entire functions that are integer valued 

on the set Xa = {an: n C N) ,  where a C Z,ia] _> 2. Let X = N or 
X = Xa and k E N or k = oc. This paper pursues analogous results for 

entire functions f having the following property: on any finite subset D 

of X with # D  <__ k + 1, the values f(z),z E D admit interpolation by 

an element of Z[z]. The results obtained assert that if the growth of f is 

suitably restricted then the restriction of f to X must be a polynomial. 
When X = Xa and k < oc a "smallest" transcendental entire function 

having the requisite property is constructed. 

1. I n t r o d u c t i o n  

T h i s  p a p e r  is a f u r t h e r  c o n t r i b u t i o n  to  t h e  la rge  l i t e r a t u r e  s t e m m i n g  f r o m  t h e  

c lass ic  p a p e r  [27] of  P61ya. Like m a n y  of  i ts  p r e d e c e s s o r s ,  it  is d e v o t e d  to  e s t a b -  

l i sh ing  r e su l t s  of  t h e  fo l lowing gene ra l  fo rm:  

Let X be a suitable discrete subset of C, and II a suitable set of 

properties. Suppose that f is an entire function whose restriction to 

X satisfies II. I f  the growth of f is suitably restricted, then f is a 

polynomial. 
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Thus the original and paradigm result ([27], as sharpened by [18] and [28]): If 

the entire function f ,  with M ( f ,  r) = max{If(z)]: [z[ _< r}, is integer valued on 

N = {0, 1 ,2 , . . .}  and 
M ( f , r )  

lim s u p -  < 1, 
?~ --"} (N:) 2?" 

then f is a polynomial. 

This result is sharp in the sense that the growth condition on f is that it grows 

slightly slower than a known transcendental entire function Tx,n (in this case the 

function 2 z) that satisfies II on X and which can accordingly lay claim to being 

the "smallest" such function. The result thus takes the sharper form: 

Let X be a suitable discrete subset of C, and II a suitable set of 

properties. There is a "smallest" transcendental entire function Tx,n  

whose restriction to X satisfies II. 

The main purpose of this paper is to obtain results of the above forms for 

X = N and for X = Xa = {an: n E N} where a E Z, laI _> 2, with the properties 

1I as set out in the following definition. A secondary purpose of the paper is to 

study these properties rather more generally, and accordingly the definitions are 

given in a general setting. All rings in this paper are commutative with unit. 

Det~nition 1.1: Let R b e  a r ing ,  Y c R, k E N. A function f :  Y--+ R will 

be called c o n c o r d a n t  to  o r d e r  k on  Y in R if for any n _< k and any choice 

YO, Yl . . . .  ,y~ E Y there exists P E R[t] such that P(y~) = f (y~) , i  = 0 , . . . ,  ~. 

A function f that is concordant on Y in R to every order k E N will be called 

s u p e r e o n e o r d a n t  on  Y in R. 

Thus, for X C Z and f :  X --~ C, concordance to order 0 on X in Z is simply 

the property of being integer valued on X, as in Pdlya's original result. A series 

of papers considers this property for other subject sets X C Z. Pdlya's original 

paper considers X = Z as well as X = N. Gel'fond [12, or 13] considers X of 

the form Xa. Bdzivin [2] obtains a result for non-periodic sequences of the form 

X : X p ,  x o  - ~  {Xn: n E N}, where xo E Z, P E Z[t] and xi+ 1 : P(xi) .  Further 

extensions applying to suitable sparse subsets of Z are pursued in [4, 25]. All 

these results are of the sharper form (to varying degrees of sharpness) in that they 

exhibit a suitably smallest transcendental entire function that is integer valued 

on X. 

The subject of integer valued entire functions has been further pursued in many 

other directions. For example, results of Pdlya [28], Selberg [31, 32] and Pisot [26] 

(see also the discussion and other references in Narkiewicz [20]) characterizing 
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entire functions that are integer valued on N but grow somewhat faster than 2z; 

results on entire functions mapping the ring of integers of a given number field into 

itself [16] (again see [20] for further references); results of Gel'fond [15, Chapter 

III] on functions integer valued on sets with certain lattice properties; results in 

which the growth of f is restricted according to direction [6, 29]; integrality of f 

and certain of its derivatives (see references below); functions of several variables 

[7]; analogues in function fields [9]. References to several recent survey articles 

are given in [20]. Earlier developments are surveyed in [5]. 

Concordance to order 1 on X in Z, for a function f :  X --+ C where X C Z, is 

equivalent to having f ( X )  C Z and, for all x, y • X, 

f ( z )  - f ( y )  • - y ) .  

Perelli and Zannier [22] consider a slightly weaker property for X = N, requir- 

ing f ( n  + p) - f ( n )  E Z.p for n E N and all sufficiently large prime numbers 

p. They prove that an entire function of exponential type less than log(e + 1) 

having this property on N must be a polynomial, but their result is not of the 

sharper form: They do not construct a transcendental entire function of exponen- 

tial type log(e + 1) enjoying this property on N. B6zivin [4] considers a property 

slightly weaker than concordance to order 1 for Xa, requiring, for n , m  E N, 

that f ( a  n+m) - f ( a  n) 6 Z.(a m - 1). Concordance to order 1, as well as some 

weakenings of it, are considered for certain sparse sequences of integers in [24]. 

The results of [4, 24] include the construction of suitably smallest transcendental 

entire functions having the requisite property on their subject sequences. 

In this paper the following result is established for X = Xa. For k = 0 it is (a 

less sharp form of) the result of Gel'fond [12], and for k = 1 it is closely related 

to the result of n4zivin [3]. For k • N set ak = (3/7r 2) ~-~-~=1 ~-2 (here, and 

throughout the paper, the empty sum is taken to have the value 0). 

THEOREM 1.2: Let a • Z, lal > 2, k • N. There exists a transcendental entire 

function Ta,k that is concordant to order k o n  X a in Z and has 

. l ogM(Tak ,  r) 1 
lm sup ~ = 
r - ~  (log.r) ~ 4(1 - ak) log la[" 

Let f be an entire function that is concordant to order k on Xa in Z and suppose 

lim sup log M ( f ,  r) < 1 
r - - + c ~  (log r) 2 4(1 - ak) log [a]" 

Then f is a polynomial. 
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Before turning to the corresponding statement for X = N some preliminary 

remarks must be made. The method of proof employed here follows that  of P61ya 

[27] and much of the subsequent work. It proceeds in two stages. In the first 

step a polynomial P E Q[t] is constructed such that P(x)  = f ( x )  for x E X. So 

P - f vanishes on X and has controlled growth; the second step shows that  in 

fact P -  f must vanish identically. P61ya uses Jensen's Theorem to effect this 

step; Carlson's Theorem, proved subsequently, implies that entire functions of 

exponential type < 7r are uniquely determined by their value sequence on N. The 

value 7r is optimal in view of the function sin(Trx). In the following result the 

growth restrictions exceed the critical exponential type 7r (once k > 11) and this 

second step cannot be effected. Thus the result stated for all k is simply that  the 

restriction of f to N is a polynomial, i.e., the value sequence f(N) is the value 

sequence of a polynomial. 

The case k = 1 of the following result follows from the result of [22]; for k = 0 
k it is a weak form of P61ya's original result. For k C N let "Yk = ~-'~-~=1 1/g. 

THEOREM 1.3: Let k E N. Let f be an entire function that is concordant to 

order k on N in Z. Suppose 

l imsup logM(f ,  r) < log(e~k + 1). 
r--~oo r 

Then there exists P • Z[t] with f ( n )  = P(n)  for n • N. 

For k > 1, the existence of a transcendental entire function TN,k that  is con- 

cordant to order k on N and of the critical exponential type log(e ~k + 1) seems to 

present an interesting problem. It will be seen that the method of proof suggests 

a natural candidate for the value sequence TN,k(n), n • N. 

A feature of concordance to any order and of superconcordance is that they 

depend only on the value sequence f ( X )  of f on X unlike, for example, the 

requirement that higher derivatives of f be integer valued on X. The latter has 

been studied for X = N (see [11] and earlier references in [5] or [20]) and X = Xa 

in [14, 7, 33]. 

A further feature of concordance to any order and of superconcordance is that  

they are obviously enjoyed by elements of Z[z] on any X C Z. Thus results of 

the form under consideration have a local-global character, somewhat impaired 

by the fact that  for k • N and X C Z there are polynomials in Q[t]\Z[t] that  are 

concordant to order k on X in Z. If X C Z is infinite, however, the elements of 

Q[t] that  are superconcordant on X in Z are precisely Z[t]. Thus for the property 

of superconcordance a true local-global result can be anticipated. 
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Here the growth rates for X = Xa as well as N are outside the range enjoying 

uniqueness of interpolation, so the conclusion is about the value sequence f ( X ) .  

Further, as in 1.3, no smallest superconcordant transcendental entire function 

Tx ,~  is constructed. However a natural  candidate value sequence Tx ,~  (x~), x,~ • 

X for such a function is suggested by the proof. Let F(z) denote the gamma 

function. 

THEOREM 1.4: 

Suppose 

Let f be an entire function that is superconcordant on N in Z. 

lim sup M ( f ,  r) - - < 1 .  
r ( r )  

Then there exists P C g[t] with f (n )  = P(n) for n • N. 

THEOREM 1.5: Let a E Z, [a I >_ 2. Let f be an entire function that is supercon- 

cordant on Xa in Z. Suppose 

lim sup log M (f,  r) 1 < - -  
r ~  (log r)~ Iog laI" 

Then there exists P C Z[t] with f (a  n) = P(a n) for n e N. 

The method of proof of the above results follows the same basic line of [27] 

and much of the subsequent work. The following outline of the method to be 

employed serves also to indicate the structure of the rest of the paper. 

Definition 1.6: A sequence X in a ring R will be called p r o p e r  if it contains no 

repeated terms. 

Let X = {x0, x l , . . . }  C C be a proper sequence. Define polynomials ~gX, n C 

C[t] of degree n E N by 

n--1 
Fi =0 (t - x d  

(~X, n ( t )  ~- n--1 
IL=0 (x,, - xd  

(here, and throughout the paper, the empty product is taken to have value 1). 

Thus Cx,~ vanishes at x 0 , . . . , x n - 1  while Cx,n(Xn) = 1. It  follows that  any 

complex-vMued function f defined on X can, on X,  be expanded in a (Newton 

interpolation) series 
oo 

f(Xn) = E e(j)¢x,j(Xn),  
j=o 

the coefficients c(n) being (uniquely) determined inductively (see 2.8 below). 
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The proof of the main results will be effected by showing that,  under the 

hypotheses made on f (z) ,  the corresponding coefficients c(n) vanish once n is 

sufficiently large. This will be forced by the combination of an estimate of c(n), 

involving the growth function M ( f ,  r) of f ,  and arithmetic information about 

c(n) following from the assumed properties of the value sequence of f on X.  

The coefficients c(n) may be expressed (as follows from [25, 4.5]) by a contour 

integral. For r > rn = max( txe f , . . . ,  IXnl), and Cr the disk of radius r, 

1 

This leads to an obvious estimate for [c(n)l in terms of M(f , r ) ,  appropriate 

formulations of which are pursued in Section 4. 

The connection between concordance of f on X in Z and arithmetic properties 

of the expansion coefficients c(n) is provided by the next result. This result will 

be established in a general setting in Sections 2 and 3 applicable to sequences 

having the following property. 

Definition 1.7: A sequence X in a ring R is called c o n c o r d a n t  if 

xj+~ - xj E R.(x~+~ - xi) 

whenever i _< j and him. 

Note that  a sequence X is concordant if and only if its successor function 

crx: X ~ X ,  ax (x j )  = xj+l is concordant to order 1 on X in R, hence the use of 

the same term. The sequences N, Xa, Xp,~ o described above are all concordant 

in Z, as are the subject sequences of [25], [24]. If  X C Z is a proper concordant 

sequence then (by [25, Prop. 1.3] or 2.7 below) the polynomials CX,n have the 

additional property of being integer valued on X. In that  case the coefficients 

c(n) belong to the ring generated by f ( X ) .  In particular, c(n) C Z for all n E N 

if f is integer valued on X. 

Definition 1.8: For a sequence X = {xj: j E N} C Z and k, n C N denote by 

Ax(k ,n)  

the least common multiple of the set of products of any n _< k distinct elements 

of {Xn - Xo,Xn - -  Xl , . . .  ,Xn - -  Xn--1}, with ~x(O,n) = Ax(k, 0) = 1. 

For f :  Z --+ Z an equivalent characterization to that  given in the following 

result is given in Aichinger [1]. For X = N and k = 1 the result also appears in 

[17, 30]. 
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THEOREM 1.9: Let k E Z. Suppose X = { x j , j  E N} C Z is a proper concordant 

sequence, and f: X -~ Z. Let c(j) C Z, j E N be chosen so that, for n E N, 

O 0  

f(Xn) -~ E c(j)¢x, j(Xn).  
j----0 

Then the following statements are equivalent: 

(1) f is concordant to order k on X in Z; 

(2) for each j E N, c(j) C Z .Ax (k , j ) .  

With this characterization, and the estimates established in Section 4, the main 

theorems are proved in Section 5. 

Finally, some remarks on directions for further work. The existence of tran- 

scendental entire flmctions that are concordant to order k > 1 on N and of the 

minimal exponential type admitted by Theorem 1.3 presents an interesting ques- 

tion, as mentioned above. Further, it would be interesting to explore analogues 

for higher order concordance of the above-mentioned results [28, 31, 32, 26, 29] 

characterizing integer valued entire functions with growth rates somewhat faster 

than the minimum possible exponential type. 

The present methods could also be applied to other properties depending on 

the value sequence f ( X ) .  For example, the property of having integer divided 

differences up to a given order. For polynomiMs in Q[t] this property is dis- 

cussed in [20]. Concordance properties of higher order could be investigated in 

the context of arithmetical functions on a sequence X, as has been studied, for 

properties similar to concordance to order 1, on X = N in [17, 22, 23, 30, 34], 

and proposed in [4] for X = Xa. 

ACKNOWLEDGEMENT: I wish to thank Hendrik Lenstra for a timely correction. 

I am also grateful to the referee for comments. 

2. C o n c o r d a n t  s e q u e n c e s  

The goal of this and the next section is a generalization of Theorem 1.9 appli- 

cable when X is a concordant sequence in a domain R. 

In this section it is shown that,  for a concordant sequence X = ( x j , j  G N} 

in a ring R, finite sets of elements of the form xi - xj admit "greatest common 

divisors" that  will play the role played by the elements Ax(k,  n) in Theorem 

1.9. Suitable expressions for such elements are obtained that will be used for the 

integer sequences Xa to estimate the size of ~x(k ,  n). It is further shown that,  

in a domain, the Newton interpolation poynomials CX,n defined as in Section 1 
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have the property that they are R-valued on X, permitting any f :  X --+ R to be 

expanded in a series over X. 

The following key result concerning concordant sequences is due to Hendrik 

Lenstra. It is proved in [24, Theorem 2.1]. Let f~ be the partially ordered set 

consisting of pairs (i, n) where i, n E N, n > 0, the order being that (i, n) < (j, m) 

if and only if i _< j and nlm. 

THEOREM 2.1: Let X be a concordant sequence in a ring R. Then there are 

elements ai,n E R for (i, n) E f~ such that, for all (j, m) E f~, 

Xj4- m -- Xj  ~ H O'i'n" 
(i,n)<(j,m) 

Let P be a partially ordered set satisfying the following two conditions: 

(a) for each p E P,  the number u(p) = # { q  E P: q < p} is finite; 

(b) any two elements p, q E P have a greatest lower bound r E P, that is, r 

satisfies that,  for any s E P,  s <_ p and s _< q if and only if s < r. 

The element r in (b) is uniquely determined by p and q; it will be denoted p A q. 

If X is concordant then, as shown in [24, 2.4], 

R.(xi+n - x d  + R . ( x j+m x j )  = R. (xh+k - xh) 

where h = min(i , j ) ,  k -- gcd(n, m). Thus the following result, which is a gener- 

alization of [24, 2.6], may be applied with the choices P = f~, (i, n) A (j, m) = 

(min( i , j ) ,gcd(n ,m)) ,  zi,n = Xi+n - x i  and ai,n as provided by 2.1. The proof 

follows the proof of [24, 2.6] very closely. 

PROPOSITION 2.2: Let P be a partiMly ordered set satisfying (a) and (b) and 

let R be a ring. Let {Zp: p E P}  be a family of elements of R with the property 

that 

R.zp + R.zq = R.zpAq 

for all p, q E P, and let {an: p E P}  be a family of elements of R with the 

property that 

Zp ~ I I  (7q 
q<p 

for all p E P. For a finite subset B C P and k E N, k _> 1 define 

B) = 

the product ranging over {r E P: ~{q  E B: r <_ q} >_ k} and, for k E N, 

b(k, B) = 1-I B). 
t¢<k 
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Then 

N R. 1] : R.b(k,B), 
D pED 

where the intersection extends over subsets D of B with # D  <_ k (for k = 0 

the empty intersection is taken to be R, the empty product b(O, B) = 1 E R. 

Likewise, for the empty set {},/3(k, {}) = 1). 

Proof: Consider first the inclusion D. To see tha t  b(k, B) belongs to each of the 

ideals R. YIpED Zp, express all quantities in terms of a t .  Let r E P .  The exponent 

of ar  in b(k, B) is max(k,  # { q  E B: r _< q}), which is clearly at least its exponent  

# { q  E D: r _< q} in l lpeD Zp. 

To prove the other inclusion, take z E ADR. HpED Zp. I t  must  be shown tha t  

z E R.b(B, k). 

Consider first the case in which R is a local ring with maximal  ideal M.  El- 

ements of R \ M  are units. For n = 1 , . . . , k  set S~ = {r E P,a~ E M , ~ { q  E 

B, r _< q} >_ n}. If  $1 is empty  then the elements ~(k, B) are all units and the 

conclusion z E R.b(k, B) is obvious. So it may  be supposed tha t  $1 is nonempty.  

Distinguish now two cases. First suppose tha t  $1 is a total ly ordered subset 

of P .  Then  each S~ is total ly ordered, and, if nonempty,  has a unique maximal  

element s~. Let h = min(k, max(~ ,S~ =~ {})). Choose ql , . - .qh  E B distinct 

as follows: sl  _< ql ;s2 ~ q2 ¢ { q l } ; . . . ; s h  _< qh • { q l , - . . , q h - 1 } .  Then  ~ ( ~ , B )  

is a unit multiple of Zq~ for 1 _< t~ < h, while ~ ( n , B )  is a unit if ~ > h. So 

R.b(k, B)  = R.zql . . .  Zqh. Taking D --= { q l , . . . ,  qh} shows tha t  z E R. 1--[peD Zp = 

R.b(k, B) as required. 

In the second case, $1 is not total ly ordered, so there exist q, r E S1 such 

tha t  O'q, O'r E M, and q, r are not comparable.  If  s = q A r then s < q, s < r. 

Writ ing the elements Zq, zr, zs as products  of the appropriate  elements at shows 

that ,  since ~q, ar E M,  Zq, Zr E M.zs. But  then Zs E R.zs = R.zq + R.zr C M.zs ,  

so tha t  there exists rn E M such tha t  z8 = mz~. Then (1 - m)z8 = 0, and since 

(1 - m) is a unit it follows tha t  zs --- 0. Take q E B with s < q. Then  zq = 0, so 

also z = 0. This proves the proposi t ion for local R. 

Consider now the general case. For each maximal  ideal M of R, the image of 

z in the localization RM is in the RM-ideal generated by the image of b(B, k). 

This means that ,  for some w ¢ M,  it holds tha t  wz E R.b(k, B).  Hence the ideal 

consisting of all such w E R with wz E R.b(k, B) is not  contained in any maximal  

ideal of R. Therefore this ideal is the unit  ideal, and contains 1. This proves the 

proposition. I 
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Let X be a concordant sequence in a ring R. As already observed, 

Proposition 2.2 may be applied to the partial order 12, the family of elements 

{xi+~ - x~, (i, n) C f~} and a family of elements a~,~, (i, n) 6 ~ provided by 2.1. 

The next result gives expressions for the elements 

f ix(k,  n) = fix(k,  B(n)),  bx(k, n) = bx(k, B(n) ) 

provided by 2.2 where k 6 N and, for n C N, 

B(n) = { ( i , n -  i): i = 0 , . . . , n -  1} C ft. 

To this end, define, for (i, r) C ft, 

Ti,r z H (TJ,r" 
j<_i 

PROPOSITION 2.3: With the above notation and assumptions 

~<_b/k] 

~<__k ,<__k r<_[n/~] 

Proo~ The element ai,~ appears in f ix(k,  n) if there are at least k elements 

X n - X j  o f B ( n )  w i t h i  < j and r [ n - j .  This occurs precisely i f k r  < n and 

i <_ n -  kr. Thus 

" X ( k ' n )  : I I  I I  O'i'r = H Tn--kr'r" 
r<_[n/k] i<_n-kr r<_[n/k] 

The expression for bx (k, n) is immediate from the definition. | 

In the case of a proper concordant sequence X in a domain, the elements 

ai,~ are uniquely determined, and the quantities 7-i,~, bx (k, n) may be expressed 

directly in terms of the quantities Xi+n - xi. 

THEOREM 2.4: Let X be a proper concordant sequence in a domain R, and 

k, n 6 N. Then, for (i, r) • ft, 

ri,~ = I I ( x ~ + ~ / ~  - x~) .(~) 

whence 

sir 

bx(k,n) = II  II  
~<_k r<[n/~] sir 
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Proo~ The  expression for ~-i,r may  be verified by evaluation,  as is done in [24]. 

- x,).(s> = H H  H -"("> 
sir sl~ j~_i mlslr j<_i mln s 

where the last p roduc t  is over sin~re. However, E p(s )  over s[q vanishes unless 

q = 1 in which case ~ p(s )  = 1. Hence 

1-I(x~+r/~ - x~)~(~) = I - I ~ j , ~  = ~ , , . .  
sly j_<i 

The  formula  for bx (k, n) now follows immediately.  | 

C O R O L L A R Y  2.5: Let X C Z be a proper concordant sequence, k, n E N. Set 

k [n/~] 

bx(k'n) = H H H(Xn--grq-r/s- Xn--~r)#(s) 
~=1 r = l  sir 

(the cases n = O, k = 0 are allowed). Then 

]bx(k,n)] = A x ( k , n ) .  

Proo£" This follows f rom 2.4. | 

For h, j E N with  h _< j define the following polynomials ,  

j - 1  

7rh,j(t) = ~TXh,j(t) = H ( t -  Xi) E R[t] 
i=h 

(the e m p t y  produc t  is here as everywhere taken to be 1). 

LEMMA 2.6: With  these definitions, suppose n >_ j and express each multiplicand 

i12 T(h,j(Xn) in terms of the elements (ri, r. Then the exponent ei,r(7~h,j(Xn) ) with 
which c%r appears in the expression for 7(h, j (Xn) is given by 

ei,r(Trh,j(Xn)) = [ ='], i f h  <_ i < j;  
O, i f j  <_ i. 

Proof: Observe tha t  

ei,r(T:h,j(Xn)) ~- # { g  e [h,j  - 1]: g _> i and t i n  - g}. 

If  h > i then the condit ion g _> i is redundant ,  and the number  of 

# { g  • [h,j - 1]: r]n - g} is equal to # { g  • In - j + 1 ,n  - h]: rig}, which 

is equal to the asserted expression. If  h _< i < j then  ei,r(Trh,j(Xn) ) is equal to 

# ( g  e [i,j  - 1]: r l n -  g} = # { g  • I n -  j + 1 , n -  i]: rig}. 
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I f  i > j then # { g  E [h , j  - 1]: g > i and r i n -  g} is empty.  I 

For a proper  sequence X in a domain  R and n E N set 

CX,n(t) - 7r°'n(t~) E K[t]. 
 0,n(Xn) 

COROLLARY 2.7: Let X be a proper concordant sequence in a domain R. Then 

for all j, n E N, Cx,j(xn) E R. 

Proof'. If  n < j then  Cx,j(xn) -- 0, while Cx,j(xj)  = 1. If  n > j ,  express 

numera to r  and denomina to r  in t e rms  of the elements  ai,~- I t  m a y  be assumed 

tha t  i < j .  In the denomina tor  

while in the numera to r  

n - i  

PROPOSITION 2.8: Let X be a proper concordant sequence in a domain R and 

suppose f: X --+ R. Then there exist unique c(n) E R, n E N such that f m a y  be 

expanded over X in the form 

f (x~)  -- ~ c( j )¢x, j (x~) .  
j=o 

Proo~ Set c(xo) = f (xo)  and, c ( j ) , j  < n having been determined,  set C(Xn) = 
f (x~)  n-1 -- ~-~j=O c(j)¢x,j(Xn).  I 

3. C o n c o r d a n t  f u n c t i o n s  

The goal of this section is to prove Theorem 3.5, generalizing 1.9. 

The  notion of a function herein t e rmed  concordant  to order 1 was t e rmed  sim- 

ply concordant  in [25]. Variant  notions have been variously named.  In [10], a 

function f :  Z -4 Z is called m o d u l a r  if it is, in the present  terminology,  con- 

cordant  to order 1 on Z; while such a function defined on N>0 is there t e rmed  

u n i v e r s a l ,  in [17] such a function is called a p s e u d o p o l y n o m i a l ,  in [30]: con- 

grue~lce preserving. In  [21], a function f :  R --4 R defined and concordant  on 

a ring R is called c o m p a t i b l e .  See the discussion in [20]. A function tha t  is 

superconcordant  on Z is t e rmed  loca l  p o l y n o m i a l  in [1]. 
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Let R be a ring and Y C R. Any f :  Y -+ R is concordant to order 0 on 

X in R. I t  is further almost immediate from the definition that  f :  Y --+ R is 

concordant to order 1 if and only if, for each x, y • Y ,  f ( x )  - f ( y )  • R . ( x  - y). 

The first result of this section is a generalization of this observation for higher 

order concordance valid in a domain• 

It  is convenient to introduce the following notation. For a ring R, Yo,.- . ,  Y~ • 

R, and f :  {Y0,...,Y~} -+ R set 

A ( y o , . . . ,  y~; f ( y ) )  -= det 

t ¢ - I  

yl  . - .  yl  S(y ) 

Let also V(y0, y l , . . . ,  Y~) = lli<j(Yj -Yi) denote the Vandermonde determinant. 

PROPOSITION 3.1: Let  R be a domain, Y C R, f :  Y -+ R, k • N. Then 

f is concordant to order k on Y in R i f  and only if, for every ~ <_ k and 

{yo, c Y, 

A(y0, Yl , . . . ,Ya;  f (Y ) )  E R.V(yo ,  y l , . . . , y a ) .  

Proof: If f is concordant to order k then, given n < k and {Y0, Yl,- . . ,Y~}, 

there exists P e Z[t] with P(Yi)  = f(Yi), i  = 0 , . . . ,  ~. Thus replacing f by P 

in the determinant does not change it, but shows immediately that  it belongs to 

R.V(yo ,  Yl , . . . ,  Y~). This proves the "only if" assertion. 

For the "if" assertion, suppose f satisfies the determinant condition, let n _< k 

and {y0, y l , . . . , y ~ }  be given. If t~ = 0, the determinant condition reduces to 

f ( xo )  ¢ R,  whence f is concordant to order 0. Thus, proceeding by induction, it 

may be supposed that  f is concordant to order n - 1, and there is a polynomial 

P E Z[t] with P(Yi) = f(Yi) , i  = 0 , . . . ~  - 1. To complete the induction and 

conclude the proof it suffices to find Q E Z[t] such that  Q(yi)  = O, i = 0 , . . . ,  n -  1 
a - - ]  

and Q(y~) = f ( y~)  - P(y~) .  Now such Q takes the form z rIi=0 (t - xi) where 
t~--l  

z E R, and will have the desired property if z l-Ii=o (Y~ - Y~) = f (Y~)  - P(Y~). 

Thus it remains to show that  

f ( y~)  - P(y~)  • R.  I I  (Y, - Yi). 
i----0 

Under the "if" assumption 

A(yo, Yl , - . . ,  Y~; f (Y) - P(Y)  ) E R . V  (yo, Yl, . . . , Y,~). 
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But  the  top  g entr ies in the  last  co lumn of this  de t e rminan t  vanish, so t ha t  

expand ing  the de t e rminan t  down the  last  co lumn finds 

A(Yo,  Yl . . . .  , Y~; f ( Y )  ) ---- ( f (Y ~ )  -- P (Y~)  ) V ( y o  . . . .  , Y ~ - I ) .  

Thus  the  assumpt ions  imply  

(f(y,~) - P ( y , ~ ) ) V ( y o , . . . ,  Y,~-I) • R . V ( y o ,  Y l , - . . ,  Y~), 

and cancel l ing V ( y o , . . . ,  Y~-I )  yields the  required conclusion. | 

LEMMA 3.2: Let  (z0, z l , . . . )  be a sequence o f  indeterminates.  For h, n C N wi th  

h < n set  

Hh,n( t  ) = ( t - -  Z h ) . . . ( t - -  Zn_l )  • Z[Z0, Z1 , . . . ] [ t ] .  

Let  Y o , . . . ,  Y~, ~ • N be indeterminates.  Then 

A ( y o , . . . ,  y , ;  ~rh,n(y)) _ 

V ( y o , . .  - Z • 
h -  l=jo ( j l  •... (:jm+ 1 =n i=O 

Proo~ The proof  will be by  induct ion  on ~. The  case ~ = 0 is immedia te ,  

however the  induct ion  s tep  from n - 1 to n requires the  asser t ion for n -- 1. I t  

m a y  be assumed tha t  h = 0 wi thou t  loss of general i ty,  and  the asser t ion for n -- 1 

m a y  be res ta ted :  

n--1 

IIo,n(X ) - Ho,n(y  ) -- (x  - y ) ~  I Io , j (X ) I I jw l ,n (y  ). 
j=O 

This  is proved by induct ion  on n. For  n -- 0 it  is t r ivial .  Suppos ing  the  asser t ion  

holds for n - 1, 

I I0 ,n(X)  - IIo,n(Y) ~-(Y - Z n - 1 ) ( I I o , n - l ( X )  - Y~O,n-I(Y)) + (:/: - Y)I-Io,n--l(X) 
n--2 

: ( X  -- y ) ~  I-~O,j(x)(y -- X n - 1 ) I I j ÷ l , n - l ( y  ) 
j=O 

+ (x - y ) n o , n _ l ( x ) .  

However, (y - Xn_ l ) I I j+ l , n - l ( y )  : II j+l ,n(y) .  This  es tabl ishes  the  asser t ion  for 

t~----1. 

Consider  now, for any funct ion f ( y ) ,  the  following row and column opera t ions  

on A ( y 0 , . . . ,  y~; f ( y ) ) .  Sub t r ac t ing  the last  row from all the  o ther  rows, d iv id ing  
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through row i + 1 by Yi - Y~, and then applying suitable column operations shows 

that 

=o Y Y~ 

Suppose then that the conclusion of the proposition holds for n -  1 where ~ _> 2 

and consider 

zX(yo,..., y~; ~h,n (y)) 
V(yo,...,y~) 

1 *~ , ~ - 1  ( - )  H~=0 (y~ - ~ ) z x /  ~h,n(y) - ~h,n(y~)~j 
. . . . . . .  Yo, Y~-I; V(yo,.. . ,y~) t .-., ~-_y~ , 

1 
I I j ,  + I,j,+ I (Ya ) A (yo, . . . , Ya-1; IIh,j ,  (Y) ) V(yo,... y~_~) 2--" 

h -  1 =jo < j  ~ <J~+ 1 = n  

employing the assertion for n = 1. Now applying the induction hypothesis 

a--1 

= ~ H~+~,~+~(~) ~ 1-I r~j~+~,;o+~(y,) 
h -  l = j o  <j~ < j~+l  =n  h -  l = j o  < j l  < . . . < j .  tt=0 

which is readily seen to be equal to the required expression. | 

LEMMA 3.3: Let  k,n  E N and let X = { x n , n  E N} be a proper concordant 

sequence in a domain R.  Suppose f :  X --+ R has f ( x i )  = O,i = 0 , . . .  , n -  1. I f  f 

is concordant to order k on X in R then f ( x n )  C R . b x ( k ,  n). 

Proof: Let ~ < k and ~ 1 , . . - , ~  E X \ { x n }  be distinct. Then there is a poly- 

nomial P • Z[t] such that P(~i) = f ( ~ )  = O,P(x~)  -- f (Xn) .  Thus P has 

the form P( t )  = Q ( t ) 1 - I i ~ l ( t -  ~i), where Q • Z[t], and so f ( x ~ )  = P ( x n )  = 

Q(x~)  I] i~l (X~ - ~i). Thus f (Xn)  • R.  I]xeD(Xn - x) for any set D consisting of 

< k distinct elements of {x~ - X o , . - . x ~  - x ~ - l } .  Thus f ( x ~ )  • R . b x ( k , n )  by 

2.2. | 

PROPOSITION 3.4: Let  k, n E N and let X be a proper concordant sequence in 

a domain R.  Then the function 

bx (k ,  n )¢x ,n  

is concordant to order k on X in R.  

Proof: The proof will be by application of the equivalence established in 3.1. 

Let ~ < k and {Yo, Y l , . . . , Y ~ }  C X ,  yi = Xn~ with 0 < nl < n2 < - ' -  < n~. It 
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must be shown that 

A(y0, . . . ,y~;  bx(k ,n)Ox,n(y) )  e R.V(yo,  Y l , . . . , y ~ ) .  

It may be assumed that n~ > n, otherwise every C X , n ( Y i )  = 0 SO that the 
determinant vanishes and the conclusion is immediate. Now by 3.2, 

A(yo, . . . ,  y~; bx(  k, n)¢x ,n(y)  ) / V  (yo, Yl, . . . , Y~) 

bx (k, n) 

- -  l=jo <jl  <je <... < j ~  < j ~ +  1 = n -  1 i=0 

It will be shown that each summand 
t~ 

bx(k,n) l-i e n. 
t j ,  ..... J,  --  T(O,n(Xn ) i=O 

It may be assumed that ni > ji for each i, otherwise t j l  ..... j m  ~- 0 E R. 
To show that t jl ..... j~ belongs to R, express each multiplicand in terms of 

the elements ai,r of 2.1 and consider, for each (i, r) E f t ,  the exponent of ai,r 
appearing. It may be assumed that i + r _< n, otherwise ai,~ does not appear in 
~ro,~(x,~), so that its exponent in tjl ..... j~ is obviously nonnegative. 

There is a unique m such that i E [jm + 1,jm+l], so that 0 _< m < n. With 
these assumptions, the exponent of ai,r in t j l  ..... j~ is, by 2.7, 

[n- i l  k~ r jm+-l- i ]  _ j , - 1  _ -~j,+l_ [ ln-i min(L r j, ' +  + ~ ( [n i  ] [ni ] )  
L r r - ~----~- 

# = m + l  

>-min([ n-r/] k) L r ] ~  ( r j m + , - i  [j.+,~j,-1])_ r]__n-i 
t t = m + l  

Now using repeatedly that, for any a, b, r E N, [a/r] + [(b - 1)/r] _> [(a + b)/r] - 1, 

[ j m + _ l - i ] +  ~ ( [ j , + l - j , - 1 ] )  n - i  >_ r 
r 

/~=m+l  

The left hand side above is also nonnegative. Thus the exponent of ai,r in tjx ..... j~ 

is at least 

min ( [ ~ - - ~ ] , k )  + max ( [ ~ - ~ ]  (~ m) ,0)  [ ] r n - i  - - . - - > o  

This completes the proof. | 
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THEOREM 3.5: Let X be a proper concordant sequence in a domain R, k E N, 

and f: X --+ R. Expand 

n 

y(Xn) 
j=O 

Then f is concordant to order k on X in R if an only if, for each n, c(n) E 

R.bx (k, n). 

Proof: The  "if" assert ion follows directly from 3.4, as a sum of functions con- 

cordant  to order k is itself concordant  to order k. The  "only if" assert ion will be 

establ ished by induction. Certainly,  if f is concordant  to order k for any k then  

c(O) E R = R.bx(k,  0). Now suppose tha t  c(j) E R .bx (k , j )  has been established 
n--1 

for j = 0 , . . .  , n  - 1. Then  f - ~ j=o c(3)¢x,j is concordant  to order k on X 

and vanishes at  x 0 , . . . ,  xn-1 .  Then  by 3.3, c(n) = f ( X n )  - ~j=On-1 c ( j ) ¢ x , j ( X n )  E 

R.bx(k,  n). This completes  the proof. I 

Proof of Theorem 1.9: Immed ia t e  from 3.5. I 

Let X be a proper  concordant  sequence in a domain  R with quotient  field K .  

Theorem 3.5 provides a descript ion of the elements  of Kit] t ha t  are concordant  

to order k on X in R. 

4. G r o w t h  e s t i m a t e s  

This section collects results connecting the growth of an entire function with the 

growth of the coefficients in its expansion over X = N or X = Xa. They  are all 

ra ther  s t raightforward.  

The  contour  expression yields the following es t imate ,  in which re(g, r) is the 

m i n i m u m  modulus  of an entire function g for ]z] = r, 

LEMMA 4.1: Let X = { x j , j  E N} C C be a p rope r  sequence, and for n E N 

s e t  r n -~ m a x ( i x 0 [ , . . . ,  [Xn[). Let f be an entire function and c(n),n E N the 

coetticients in the expansion of f over X .  Then 

r M ( f , r )  
Ic(n)[ _< inf 

~>r~ r - r~ m(¢x,~,  r)" 

The  following result  for X --- N is a general izat ion of [27, 22]. 
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LEMMA 4.2: Let  f be an entire function with 

l imsup log M ( f ,  r)  <_ b. 
r - + ¢ ~  r 

Let  c(n) be the coefllcients in the expansion o f  f over N. Then 

l imsup l °g lc (n ) l  _< l o g ( e b  1). 
n - + o o  r~ 

Proo£" Let /3  > b, and choose a C (b,/3). For a suitable constant C it holds tha t  

M ( f ,  r) <<_ Ce a~ for all positive r,  and so, if n E N and r > n sufficiently large, 

Cn!e ar 
le(~)l _< ~(~- 1 ) . . . ( ~ -  ~)" 

It follows tha t  

ic(n)le_nlog(eZ_l) < C r ( n  + 1)F(r  - n)e ar-nl°g(e~-l)  
- r ( r )  

< n n (r -- rt) r -n  eflr_ n log(e ~_1) 
-- r r 

provided n and r - n are sufficiently large, by Stirling's formula. Pu t  r = n /~  

where ~ C (0, 1). Then,  for sufficiently large n, 

le(n)le - ' l°g(e'-l) < (¢~(1- ¢)l-~eg-~l°g(°'-l))r = (~(¢)y. 

Now on the interval ~ E [0, 1] the function ~(~) takes its minimum value ~(~) = 1 

at  ~ = (e z - 1) /e  z. Hence, with this choice of ~, for sufficiently large n, 

le(n)l ~ e nl°g(ez-1)  

so tha t  

l imsup log ]c(n)] _< l o g ( J  - 1 ) .  

n---+(x) n 

Since this holds for a rb i t ra ry /3  > b, the conclusion follows. I 

Throughout  the remainder  of this section let a E Z, laI _> 2, x = Xa. The  

following results are variants of results of [12, 13, 14, 4]. 

LEMMA 4.3: Let /3  C [0, oo) and suppose f ( z )  is an entire function wi th  

l o g M ( f , r )  /3 
limsup~_+oo ( logr)  2 -< log]aI 
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Let c(n) denote the coefficients in the expansion of f over X .  Then 

log Ic(n)l 
lim sup n2 _</3 log l al. 

n --'~ O O  

Proo~ The estimate for Ic(n)[ given in 4.1 implies that,  for suitable constant C, 

if r _> 2lap  then 

r - -  - -  la[M(f , r )  lan 11"'1 an a ~ - t  I 
r - (r - 1 ) . . . ( r -  ]al m-I) -< CM(f 'r) la[n=r-C Ic(n)] < 

Let b be chosen with/3 < b, and set r = 21al n. Then 

log M(f, r) b 
(log~)~ -< logla--~ 

once n is sufficiently large. Now 

b(log r)2 
logla[ - bn2 + O(n), 

le(rt)l <_ Vial bn2+O(n). 

Therefore 
log le(n)l 

lim sup n2 < b log lal. 
n - + o o  

Since this holds for any b >/3, the conclusion follows. | 

The above may be improved over part of the growth range by a more judicious 

application of 4.1. 

LEMMA 4.4: Let/3 E ( - ~ ,  1/2) and suppose f (z )  is an entire function with 

log M ( f ,  r) 1 
lim sup _< 

r + ~  (logr) 2 4(1 - /3 )  log lal" 

Let e(n) denote the coefBcients in the expansion of f over over X .  Then 

l imsup log Ic(n)l < fllog lal. 
n - + ~  n 2 - -  

Proof: The estimate for ]c(n)] given in 4.1 implies that,  for suitable constant C, 

if r >_ 21a[ n then 

r I~ n - 1 1 . - - I ~  n - a ~ - l I  
Ic (n)  l CM(f , r ) ]a]~r  -~. <_ r --ia] n M ( f ' r )  - ~ : - 1 ) . - .  ~ - -  ]a~-f )  <_ 

Let b be chosen with/3 < b < 1/2, and set r = ]a] 20-b)n. Then 

l ogM( f , r )  1 
(log r) 2 4(1 - b)log lal 



336 J. PILA 

once n is sufficiently large. Now 

( logr)  2 

4(1 - b)log lal 

and 

Therefore  

= (1 - b)n 2 log lal 

Ic(n)l ~ Clal (1-b)n2+n2-2(1-b)n2 = Cla] bn~. 

log Ic(n)l ~ blog lal. lira sup n2 
n---+ o o  

Isr. J. Math. 

Since this holds for any b > fl, the conclusion follows. | 

LEMMA 4.5: Suppose a E (-oo, 1/2) and c(n) E C, n E N satisfy 

log Ic(n)] _< c l o g  lal 
lira sup n2 

n - - ~ o o  

as n -+ oo. Then the series 
oo 

f(z) = E c(n)¢x,n(Z)  
n----O 

converges normally, thus determining an entire function f ( z ), and f ( z ) satisfies 

log M ( f ,  r) 1 
limsupr_4oo ( logr)  2 -< 4 ( 1 - a ) l o g [ a [ "  

Proof: Let a < u < 1/2. For suitable C (depending on u), [c(n)[ _< C[a[ ~n2. If  

z E C it follows tha t  

[c(n)Cx,n(z)l <_ Clal(U-1/2)n2 (1 + Iz])... (1 + 
l a in - l :  

and normal  convergence of the series follows. 

Suppose now r > 0, and Izl < r. Choose N such tha t  lal N-1 _ r < lal N. For 

n _< N and j _< n - 1, 1 + Izl/la? <_ Izl/lal j-1 whence 

Jc(n)Cx,n(z)l < C]a] (u-1/2)n2+nN-n(n-1)/2+n = C[a] (u-1)n2+n(N+l/2). 

The  m a x i m u m  of (u - 1)x 2 + ( g  + 1 /2)x  occurs for x = (Y  + 1 /2) / (2(1  - n)), 

hence 

N 

Z Ic(n)Oxn(z)l 
n:O 

fN-t-1 < C e- (1-u)  log [alx2+(N+l/2) log [alXdx "F 2e l°g [al(N"kl/2)2/(4(1--u)) 
, / 0  

_< (Cv / (1  - u) log la12~ + 2)e '°g la[(N+l/2)2/(4(1--u)) 
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by extending the range of integration to ( -oc,  co). For n > N 

lC(U)~)X,n(Z)I ~_ V l i  + tal(U-1/2)n2+N 2-n(n-1)/2+N+l, 

so that 
OO 

E 
n = N + I  

¢~ CII + IaIuN2 + N + t 
]c(n)Ox,n(Z) <- CI'[+laluN2+N+l E lal 2(~-I)Nj = 

j=o 1 - la]  2(u-1)g " 

Now u _< 1/(4(1 - u)), so the estimate of terms with n < N dominates the 

estimate of terms with n > N. Since logr _> (N - 1)log [a[ it follows that 

log M(f ,  r) 1 
limsup (iogr) 2 < - 4 ( 1  - u ) l o g  lal" 

Since this holds for any u with c~ < u < 1/2, the conclusion follows. | 

The following result establishes conditions under which f is represented by its 

expansion over X. 

LEMMA 4.6: Suppose f is entire and 

logM(f ,r)  1(  logr ~2 1 (  logr ~ -w( r )  
loglal < 2 " , 1 o - ~ ]  + 2 \ l o g [ a l l  

where w(r) -+ oc as r -+ cx~. Then f is represented by its expansion over X .  In 
particular, f is represented by its expansion over X if 

logM(f ,r)  1 
limsup (logr) 2 <21ogla------- ~ .  

Proof: The expansion takes the form f(z) = ~-~n~=O c(n)¢x,n(Z) where 

1 / c  f(t)dt 
C(rt) : ~ (t  -- Xn)~)X,n(t ) ' 

the integral being over the circle C of radius r > [a[n. 

To establish the representation, let z E C and for n E N set 

Wn(z) = f(z) - ~ c(j)Oj(z). 
j=O 

Then, as in [25, 4.6], Wn (z) may be expressed as a contour integral over the circle 

Cn of radius s~ > r~ --la] ~, 

1 /~  f(t)dt Wn(z) = 



338 J. PILA Isr. J. Math. 

Choosing Sn = lal n+1/2 yields, for an appropriate choice of constant C > 0 

(depending on a and z), the estimate 

IWn(z)[ _< C M ( f ,  sn)lal n(n-1)/2-n(n+l/2) < CM3/s-"~(s~). 

Since W(Sn) --+ oe as n --+ oe, IWn(z)l -+ 0, and the proof is complete. | 

The leading coefficient 1/2 is best possible, in view of the entire function 

o o  

= I I  0 
n = 0  

which vanishes on X and satisfies limsupr_~o o (log M(H,  r)/(logr) 2) = 1/2. 

5. P r o o f  of  t h e  m a i n  t h e o r e m s  

Considering first the results for X = N, the proof of Theorem 1.3 requires the 

following observation. 

k LEMMA 5.1: Let k E N, 7k = ~ = 1  1/n. Then as n --+ oo, 

/kN(k, n) -- e ~kn+°(n). 

Proo~ This follows from the Prime Number Theorem. | 

Proof of Theorem 1.3: Let f be entire of exponential type b < log(e TM + 1), and 

c(n) the coefficients in its expansion over N. Choose/3 with log(e b - 1) </3 < 7k- 

Then by 4.2, for all sufficiently large n, ]c(n)[ < e ~n. However by 1.9, since f is 

concordant to order k, c(n) is divisible by AN(k, n) for all n. Therefore, in view 

of 5.1, c(n) = 0 for all sufficiently large n. | 

Proof of Theorem 1.4: Suppose f is superconcordant on IN. Then, taking r -- 

n + 1 in the estimate of 4.1, 

n!M( f , r )  n !M( f , r )  
Ic(n)l ~_ 

( r -  1 ) . . . ( r -  n) F(r) 

Under the assumptions on f ,  

lim sup ~ < 1. 
n - - + o o  f t .  

Since f is superconcordant, c(n) is divisible by n!. Hence c(n) = 0 for all suffi- 

ciently large n. | 

Turning to the results for Xa, the following result is needed in the proof of 

Theorem 1.2. 
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LEMMA 5.2: Let a E Z, ]a[ _> 2, X = Xa, k E N, ak = (3/7r 2) ~-~,¢=1k n_2. Then 

log Ax (k, n) 
lim sup n2 - ak log lal . 

n - + o o  

Proof." By 2.5, Ax(k ,n )  = ]bx(k,n)l. Write bx (k ,n )  = [I k .=1 fl(n, n), where 

fl(l%rl) = 1-I 1-I (an-~:r+r/s --an-~r)l~(s) 
r = l  sir 

In~x] 
= I-[ (rI(an-ar)#(s))(I-[  (at~s- 1)~(s))" 

r = l  sir sir 

Now E,I~ g(s) = 0 unless r = 1, in which case E,I~ #(s) = 1. Therefore 

8IF 

and so 
[~/~] 

r= l  sir 

Thus Ifl(n, ~)l = M ¢(n'~)+°(n) where the implied constant depends on lal, k and 

[n/~] [n/~] 

e(~,~)-- n -  ~+ Z r ~  "(~) = ~ - ~ +  ~ 0(~) 
8 

r = l  sir r= l  

where ¢(j)  is the Euler C-function. Now by [19, Theorem 330] 

3 n2 ~ ¢(r) = ~5 + O(nlogn) .  
r = l  

Therefore 

k b/~] 3 n  2 ~ 1 Z O(r)= ~2 ~ + O(nlogn), 

and this completes the proof. | 

Proof of Theorem 1.2: Set 

Go 

Ta'k(Z) 7- E bx(k' ?Z)¢X,n(Z)" 
n----O 
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By 5.2 and 4.5 it holds that T~,k is entire with 

log M (Ta,k, r) 1 
lira sup = 

~ - ~  (log r) z 4(1 - ~k)log lal" 

The growth estimate implies that  Ta,k is transcendental, which also follows im- 

mediately from the fact that the expansion coefficients bx (k, n) do not vanish for 

all sufficiently large n. Further, Ta,k is concordant to order k on X by 1.9. 

Now suppose f is concordant to order k on X. Let c(n) denote the expansion 

coefficients of f over X. By 1.9, c(n) is divisible by Ax(k,n)  for each n 6 Y. If 

infinitely many c(n) are nonzero then, by 5.2, 

whence, by 4.4, 

log Ic(n) l 
lim sup n2 >_ ak log lal, 

n--+oo 

log M(f ,  r) 1 
lim sup ~ > 

~-~oo (log r) - 4(1 - C~k) log ]a[" 

However, f is hypothesised to fail this condition. So only finitely many c(n) 
are nonzero. By 4.6, f is represented by its expansion over X, hence f is a 

polynomial. | 

Proof of Theorem 1.5: By 4.3 the expansion coefficients c(n) of f satisfy 

lim sup log < .  log lal 
n--+oo n2 

where c~ < 1. Since f is superconcordant on X, c(n) is divisible by 
(a n - 1 ) . . .  (a n - a n - l )  for each n by 1.9. Now 

l im log [ (a  n - -  1 ) ' "  ( a  n - -  a n - l ) ]  ~_ log M- 
n---~oo n 2 

Therefore c(n) = 0 for all sufficiently large n. | 

In view of the canonical expressions provided by 2.4, it is natural to make the 

search for a smallest transcendental entire function TN,k concordant to order k on 

1~1 more precise by requiring that it be of the minimal exponential type admitted 

by 1.3 with 

n n 

E E T~,k (n) = bx (k, n)¢x,j  (n) = bx (k, 3 • 
j = 0  j --o J 
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Turning to superconcordant functions, it is natural  likewise to seek TN,oo with, 

for n E N, 
n n 1 

T~,~(n)  ---- ~ n ( n -  1 ) . . . ( n -  j + 1) = n! j~, 
j-~0 j =0 

and 
M(Tr~,~, r) _ ~ 1 

l iAn r ( r  + 1) ,--- ~. = e 
j=O 

(in which case Theorem 1.4 might be sharpened). 

Results on entire functions concordant to order k _> 2 or superconcordant might 

also be pursued for the more general concordant subject sequences X of [2, 25]. 

The expansion series 

n n j -1  

Tx,k(z) = F_ x(k, n)Ox,j(z), Tx, (z) = F_, I-[ ( z -  
j=0 j=0 i=0 

do not in general converge for z ~ X. Functions Tx,k, Tx,oo having the required 

values on X would necessarily be transcendental as, for any proper sequence 

X C Z, the expansion coefficients of a polynomial are eventually zero. 

Extending to higher orders of concordance the elegant interpolation of the 
DO (nonconvergent) series Ej=o CF~,j(Z) on the sequence N effected by the entire 

function T•,0(z) = 2 z for those sequences X for which the interpolation series 

does not itself determine an entire function thus presents an appealing problem. 

For the case X = N this problem is additionally intruiging as the values on 51 of 

the sought functions carry arithmetic information. 
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